A simplicial complex model of dynamic epistemic logic for fault-tolerant distributed computing

نویسندگان

  • Eric Goubault
  • Sergio Rajsbaum
چکیده

The usual epistemic S5 model for multi-agent systems is a Kripke graph, whose edges are labeled with the agents that do not distinguish between two states. We propose to uncover the higher dimensional information implicit in the Kripke graph, by using as a model its dual, a chromatic simplicial complex. For each state of the Kripke model there is a facet in the complex, with one vertex per agent. If an edge (u, v) is labeled with a set of agents S, the facets corresponding to u and v intersect in a simplex consisting of one vertex for each agent of S. Then we use dynamic epistemic logic to study how the simplicial complex epistemic model changes after the agents communicate with each other. We show that there are topological invariants preserved from the initial epistemic complex to the epistemic complex after an action model is applied, that depend on how reliable the communication is. In turn these topological properties determine the knowledge that the agents may gain after the communication happens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models of fault-tolerant distributed computation via dynamic epistemic logic

The computability power of a distributed computing model is determined by the communication media available to the processes, the timing assumptions about processes and communication, and the nature of failures that processes can suffer. In a companion paper we showed how dynamic epistemic logic can be used to give a formal semantics to a given distributed computing model, to capture precisely ...

متن کامل

Toward Sofware Synthesis for Distr ibuted Applicat ions

This paper describes Sage, a software environment supporting software development, synthesis, and testing for distributed computing applications. While the principal domain of interest is applications that must be fault-tolerant (i.e., be able to withstand the failure of some of the participants) Sage is not limited to this; it can be extended to distributed applications with no criticality req...

متن کامل

Fault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit

Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...

متن کامل

Fault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit

Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...

متن کامل

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.11005  شماره 

صفحات  -

تاریخ انتشار 2017